Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chembiochem ; : e202400203, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602845

RESUMO

This study explores a combination of the concept of enantioselective enzymatic synthesis of ß-chiral amines through transamination with in situ product crystallization (ISPC) to overcome product inhibition. Using 2-phenylpropanal as a readily available and easily racemizing substrate of choice, (R)-ß-methylphenethylamine ((R)-2-phenylpropan-1-amine) concentrations of up to 250 mM and enantiomeric excesses of up to 99 % are achieved when using a commercially available transaminase from Ruegeria pomeroyi in a fed-batch based dynamic kinetic resolution reaction on preparative scale. The source of substrate decomposition during the reaction is also investigated and the resulting unwanted byproduct formation is successfully reduced to insignificant levels.

2.
Angew Chem Int Ed Engl ; : e202401989, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38628134

RESUMO

While simultaneously proceeding reactions are among the most fascinating features of biosynthesis, this concept of tandem processes also offers high potential in the chemical industry in terms of less waste production and improved process efficiency and sustainability. Although examples of one-pot chemoenzymatic syntheses exist, the combination of completely different reaction types is rare. In this work, we demonstrate that extreme "antipodes" of the "worlds of catalysis" such as syngas-based high-pressure hydroformylation and biocatalyzed reduction can be combined within a tandem­type one-pot process in water, which both play an outstanding role as individual reactions. No significant deactivation was found for either the biocatalyst or the chemocatalyst. A proof­of­concept for the one-pot process starting from 1-octene was established with >99% conversion and 80% isolated yield of the desired alcohol isomers. All necessary components for hydroformylation and biocatalysis were added to the reactor from the beginning. This concept has been extended to chiral products by conducting the hydroformylation of styrene and an enzymatic dynamic kinetic resolution in a tandem mode, leading to an excellent conversion of >99% and an enantiomeric ratio of 91:9 to (S)­2-phenylpropanol. The overall process runs in water under mild and energy-saving conditions, without any need for intermediate isolation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...